
Defense Advanced Research Programs Agency: Study

System Utility Function for Adaptive/Reconfigurable MANETs
�

Gustavo de Veciana
Email: gustavo@ece.utexas.edu

1 Goals and Discussion

In this project a system utility function for a MANET will play a dual role. Its first role is as a means to
specify high-level objectives. By associating values to various possible system states the system utility func-
tion serves to drive adaptation/reconfiguration mechanisms towards better meeting the demands of a specific
mission or dynamic set of applications. In other words it implicitly captures the intent/tradeoffs the network
designer would make rather than specifying particular configurations for each possible operational regime.
Capturing such objectives via a single overall utility function is itself a nontrivial goal, particularly as there
is a need to do so over a wide set of possible scenarios. Furthermore for mission-oriented applications
the tactical context will play a critical role. Similarly in commercial networks one would expect business,
security and other requirements to have a critical impact on the overall system utility. Thus designing a
utility function capturing mission goals will involve rules mapping specific contexts, e.g., an emergency
or high risk period, to appropriate utilities/sensitivities among ongoing tasks. In addition to specifying an
overall utility it would be useful to independently supplement it by introducing further additional goals,
or operational constraints, e.g., connectivity requirements, network/node lifetime requirements, additional
fairness or strict prioritization among application types. Operational constraints should be viewed as explicit
actions and/or goals that take precedence over optimization of the system utility function. The second role
of the system utility function is as a test and evaluation metric to assess the effectiveness of reconfigura-
tion/adaptation mechanisms. In this study we will make an initial recommendation for the basic building
blocks of a system utility function for MANETs, discuss some possible complementary operational con-
straints, and briefly consider interface requirements. We conclude with some challenges faced in defining
an overall utility function for MANETs.

2 Recommendation

2.1 Tactical MANET: Application types and task workloads.

We start by briefly discussing a basic set of application types that would be used in a tactical mission
which leverages a MANET. The descriptions are perforce high level recognizing that new applications are

�

Approved for Public Release. Distribution Unlimited.

1

emerging. The goal is to give a fairly clear picture of the character of the workload that will be supported
by tactical MANETs.

File transfers, e.g., files with maps or slides, to a set of nodes/users are likely to be mediated via a reliable
multicast service. End nodes are likely to be sensitive to file transfer delays, i.e., not the delay of
individual packets but the time to reliably receive the full document. Alternatively such tasks are
sensitive to the bandwidth they are allocated throughout their lifetime in the system. If multiple
receivers are involved, the task may be sensitive to the delay until all have the file. For a typical
reliable multicast transport mechanism the delays to complete the transfer to various receivers would
be roughly the same, i.e., are bottlenecked by the slowest receiver.

Situational awareness (SA) applications keep each node/user associated with a multicast session appraised
of the current location and state of other nodes/users. Thus each node/user transmits update packets
at regular intervals, e.g., 1 sec intervals, a fraction of which should arrive within some delay, e.g.,
5 sec, so that each node can maintain a consistent picture of the overall state. Update packets that
are excessively delayed, e.g., 5 sec, or packets that arrive out of order are deemed worthless. SA
applications would likely be built on an unreliable multicast transport mechanism. SA applications
are typically ongoing throughout a mission, though their ‘importance’ may vary over different phases
of the mission.

Packetized voice sessions, e.g., based on VoIP technology, will be one of the important basic application
types. For tactical communications these are likely to be of the push to talk type, i.e., users join a
multicast session and talk to the set via a push to talk protocol. The traffic volume associated with
voice would be fairly high, when users are active, and fairly bursty, i.e., a user will go from the active
to listen/standby states and the active user in a group may change around in a correlated fashion – i.e.,
only one user is active at a time. Such applications would use unreliable multicast transport since they
are sensitive to packet delays and retransmitting lost packets is not likely to be useful. Note reliable
multicast service might also be used if longer delays and high jitter can be smoothed out by using
playback buffers and/or the session is not interactive. Multiple, possibly overlapping, voice sessions
may be ongoing over different sets of users, for fairly long periods of time.

Real-time packet video involves a flow of packetized image and audio signals carried across the network
to one or more end points. As with voice, packets should preferably not be dropped and are not useful
if they are excessively delayed. The quality of service seen by end users for video will depend on
a variety of features including how traffic is coded and packetized, e.g., layered encoding, priority
sensitive packetization, forward error correction etc. For simplicity, we will assume that quality im-
proves with the fraction of packets that arrive without being excessively delayed to the set of receivers.
Real-time packet video would typically be built upon an unreliable multicast or RTP/UDP transport
service permitting flexible one-to-one or one-to-many video transmissions.

Collaborative/whiteboard applications involve a group of end nodes maintaining a common state, i.e.,
the state of the shared whiteboard. Each node/user may generate commands that must be shared on
a timely basis with all nodes/users involved in the session so that they have a common view of the
whiteboard. This is similar to situational awareness applications, except that the traffic generated by
nodes/users might be more bursty. Such applications might further involve file transfers, voice, video,
etc., which we consider as separate tasks.

General observations on tactical mission application types and ad hoc networking. Our first ob-
servation is that although tactical missions may involve point-to-point sessions, the common case is one
involving sets of users exchanging information via reliable/unreliable multicasting. Thus the overall utility

2

character application type transport mechanism QoS sensitivities
elastic file transfer reliable multicast/TCP file transfer delay

situational awareness unreliable multicast lost
inelastic voice unreliable multicast and/or

video unreliable multicast/RTP-UDP excessively
collaborative reliable multicast delayed packets

Table 1: Table exhibits the basic application types, associated transport mechanism and main quality of
service attributes of interest.

of the network in supporting a given task will need to integrate the perspective of a set of receivers. The
second observation is that the resources involved in supporting communications over an ad hoc network may
vary dramatically based on the network topology and location(s) of end node/user(s). Indeed, connectivity
is maintained via hop-by-hop relaying, thus nodes that are far from each other will require more resources
to communicate than those that are close by. When bandwidth and/or energy are limited the overall utility
function will need to reflect reasonable tradeoffs among tasks that are of similar importance but have dra-
matically different resource requirements. For example, in some cases one may wish to be fair among such
tasks, whereas in others one may wish to discriminate among tasks due on the scarce resources required to
support them. Finally we note that the above application types exhibit different sensitivities to the end to end
performance they see, which in turn also depend on the transport mechanism upon which the application is
built. Table 1 summarizes the application types and quality of service aspects for the key applications we
have introduced. As shown in the table we differentiate between elastic applications which are sensitive to
the perceived transfer delay, or average bandwidth, and inelastic applications that are sensitive to lost and/or
excessively delayed packets over time.This will be discussed in more detail in the sequel.

Independent task workloads. We shall define an independent task workload for a MANET, as a se-
quence of tasks that are offered to the network during a given period – this is defined in more detail below.
Independence refers to the that fact that the same workload is offered to the network irrespective of whether
one or more of the tasks in the sequence fails to complete adequately. If tasks do exhibit such dependencies,
they could in principle be grouped into task threads, i.e., dependent sequences of tasks, and workloads con-
sisting of independent task threads might be considered. For now we focus on independent task workloads
and leave the problem of considering task threads for future work – see Section 5.

2.2 Current and overall system utility functions

We model the overall evolution of the system using discrete time slots indexed t � 1 � 2 ������� where each slot
has a duration ∆ secs. We model an independent task workload for a MANET as a sequence of tuples

W � ���
ai � Ri � si � ui � wi �	� i � 1 � 2 �������
� m ���

Here ai
 T denotes the application type for task i, and T is a set of possible application types, e.g., voice,
file transfer, etc. The set Ri corresponds to a set of receiver nodes/users associated with task i, e.g., the
members of a multicast group. Thus if the task is a point-to-point unidirectional session R i might contain
a single receiver node. If task i corresponds to a sender transmitting a file to a set of users, then R i would
contain only the set of receivers for that file. If the task involves a set of nodes, which are both receivers and
senders, e.g., push to talk voice, situational awareness, then Ri would contain all nodes participating as both
receivers and senders. Finally si
���� the start time for task i. The last two elements of the tuple ui and wi

correspond to a utility function and weight associated with task i and will be explained in more detail below.

3

notation meaning
W task workload
i index for tasks i � 1 ������� m
ai type of task i where ai
 T is one of a set T of possible types
si start time for task i where si
 ���
Ri set of receivers associated with task i
fi finish time time for task i where fi
 ���
At set of tasks that are active at time t

ui
� � utility function ui :

��� Ri
�����

associated with task i
wi weight associated with task i where wi
 � ��

qi
�
t � QoS vector

�
qi
�
t � � �

qi
�
t � r �	� r
 Ri � for task i’s receivers at time t

Table 2: Table summarizes notation associated with describing task workloads

An adaptation/reconfiguration policy p may affect both the time at which a task i finishes, denoted f i,
and the quality of service task i sees on each time slot during its sojourn in the system. At any time t we let
At denote the set of tasks that are active in time slot t, i.e.,

At � �
i � si � t � fi � i � 1 �������
� m ���

For each task which is active at time t, i.e., i
 At , we let
�
qi
�
t � � �

qi
�
t � r �	� r
 Ri � denote a vector capturing

the quality of service the network delivers to task i’s receivers during slot t. Note that
�
q i
�
t � may correspond

to different quality of service metrics depending on the task type. Note that although we have not denoted
this explicitly a reconfiguration/adaptation policy p may affect the the finishing time of tasks, and thus the
active set at a particular time, as well as each task’s quality of service vector.

We shall define an additive utility function for the MANET based on two quantities associated with
each task. We let ui

� �
qi
�
t ��� be a function that captures the ‘utility’ that task i derives from the QoS vector

during time slot t. We shall assume that ui
�
	 � is normalized so that it is at most 1 corresponding to the

best possible QoS. If the utility is 0, this corresponds to a task which is given insufficient resources, i.e.,
is essentially blocked. In the next section we will associate different types of utility functions to tasks
depending on the application types. We further associate a weight wi with each task i intended to capture
its relative importance within the mission at hand. Note that in this framework the weight associated with
a task is static and preassigned by the mission designer or assigned on the fly by a ‘mission understanding’
subsystem. It may make sense, in some cases, to have a ‘task’ that is ongoing over different phases of a
mission have different weights during those phases. To capture this, we would include in our workload a
sequence of identical tasks which abut on each other but have different weights.

Additive current weighted utility function. We define the overall utility Ut
�
W � p � for a MANET under

workload W and policy p at time t by

Ut
�
W � p � � ∑

i � At

wi ui
� �
qi
�
t ��� (additive overall utility function at time t) (1)

and the normalized overall utility at time t by

Un
t
�
W � p � � ∑i � At

wi ui
� �
qi
�
t ���

∑i � At
wi

(normalized additive utility function at time t) � (2)

Thus the normalized additive utility at time t can be at most 1. Note if At is empty we shall follow the
convention that U n

t
�
W � p � � 1.

4

Overall normalized system utility function. Suppose the mission lasts t � time slots. We define the
overall system utility U n � W � p � for a MANET subject to workload W and adaptation/reconfiguration policy
p as the time-average over the period of operation, i.e.,

Un � W � p � � 1
t �

t
�

∑
t � 1

Un
t
�
W � p � (overall normalized system utility) � (3)

With the above conventions if a system achieves an overall normalized system utility close to 1 then the
adaptation/reconfiguration policy has realized optimal tradeoffs with respect to the weights and task utility
functions the system designer provided.

2.3 Utility functions for different application types

We shall begin by considering basic elastic and inelastic point-to-point tasks, i.e., tasks where the set of
receivers Ri includes only one node which we denote by r, i.e., Ri � �

r � , and so the QoS vector is in fact a
scalar, i.e.,

�
qi
�
t � � �

qi
�
t � r ��� � Subsequently in Section 2.3.2 we consider ways of composing these to handle

tasks that include multiple receivers.

2.3.1 Application-level utility functions for point-to-point sessions

Application-level utility functions–elastic case. We say that a task i is elastic if its utility on a given time
slot depends on the bandwidth seen at the receiver r. Specifically we let q i

�
t � r � be

qi
�
t � r � � bits successfully received by r on time slot t

∆
(4)

i.e., the receive bandwidth for time slot t. We define the utility of an elastic task as an increasing concave
function of qi

�
t � r � � Two possible options are shown in Figure 1. The simplest alternative is to use a linear

function
ui
�
x � � x

pi
�

where pi denotes the peak receive rate for r or an upper bound for it. In this case the utility of an elastic task
on a given slot is simply proportional to the bandwidth realized by the session. The utility is normalized to
be at most 1 when the receive bandwidth equals the peak rate. For such linear utility functions the ‘marginal
utility,’ i.e., the derivative of utility with respect to QoS, i.e., bandwidth for the elastic case, is a constant. In
practice such tasks would typically have a decreasing marginal utility with additional bandwidth, i.e., they
value a reasonable amount of bandwidth, and thus reduced delay, but see diminishing returns as it becomes
sufficiently high.

The second simple option for an elastic utility is to use an exponential function

ui
�
x � � 1 � e

� αix �
where αi

� 0 � As shown in Figure 1 this is a strictly concave increasing function of the bandwidth x saturat-
ing at 1. Here, αi might be selected to be smaller for tasks which respond poorly to low bandwidth or high
overall transfer delays.

A typical elastic task would be a file transfer mediated by the TCP protocol1 . The utility of such a
task primarily depends on the delay to transfer the file or equivalently on the average bandwidth prior to
completion. An elastic application that must be expedited should either be assigned a higher weight or

1Note that TCP is a reactive protocol, it slows down the rate of transmission when there is congestion or delays and speeds up
otherwise.

5

1
exponential utility

linear utility

peak transmission rate

x = recieved bandwidth per slot

u (x)
i

Figure 1: Examples of elastic utility functions.

may be assigned a higher sensitivity to the bandwidth it will see on each slot, e.g., lower value of α i. The
above provides some latitude to an adaptation/reconfiguration mechanism to make such tradeoffs which
discriminate among the importance and requirements of various tasks.

A final remark. We have defined the normalized current utility of the system to be 1 if there are no active
flows in the system. Thus suppose an adaptation/reconfiguration system ‘blocks,’ i.e., allocates no resources
to, an elastic flow that is initiated at time si � According to our definition of the system utility, this task would
then not complete prior to the end of the mission t � . ‘Soft’ blocking of an elastic task would contribute a
weighted utility of zero to the normalized current utility, Eq. (2), and do so during the period

�
s i � t ��� � thus

reducing the overall system utility Eq. (3). In other words it is preferable to complete such tasks as soon
as possible.2 Indeed since we have normalized the utility of a task to be at most 1. If a task is blocked the
overall system utility will degrade. Thus a utility maximizing policy will be driven to complete elastic tasks
as soon as possible.

Application-level utility functions–inelastic case. By contrast to elastic tasks the utility of an inelastic
task for a given time slot depends in a more complex measure of the QoS it receives. Recall that the inelastic
applications of interest in our context are situational awareness, voice, video and collaborative white boards.

For such applications we shall assume that QoS roughly depends on the fraction of packets that are lost
or excessively delayed.3 For simplicity we shall define the QoS metric for receiver r of task i at time t as

qi
�
t � r � � fraction of ‘useful’ packets successfully received by r in time slot t � (5)

If no packets are transmitted on the t th slot then we define qi
�
t � r � to be 1. The ‘usefulness’ of a packet

may depend on its delay, e.g., if a packet is delayed beyond an application dependent bound d �i then it is
deemed useless. Also if a packet arrives out of order it may be deemed useless for some applications, e.g.,
a situational awareness update. Note that we will assume that the time slot window ∆ is quite a bit larger
than the acceptable end-to-end delays of applications otherwise the above QoS metric would be difficult to
assess.

The tolerance to loss and delay of various applications may vary. For example smoothing buffer(s) at
a receiver end node can buffer packetized streams allowing for a higher or lower tolerance to delays for
audio/video streams. Also for media streams lost packets may be concealed using interpolation without
substantially degrading performance. We shall let the utility of an inelastic application be a sigmoidal
function of qi

�
t � r � , e.g.,

ui
�
x � � 1

1 � e � αi � x � βi � where αi � βi
� 0 � (6)

2One might specify a maximum transfer delay, say mi for such sessions beyond which the transfer has no value in which case a
soft blocking of such a session would penalize the network only for a period � si � min � si � mi � t �
	

.
3Note that delay jitter also impacts QoS, we will however ignore it for now, assuming that absolute delays are sufficiently

constrained and playback buffers can smooth out such variations.

6

As shown in Figure 2 the value of αi impacts the task’s sensitivity to QoS degradation while the value of βi

captures an acceptable ‘region of operation’. Thus if too many packets are lost the QoS is unacceptable but
once the the fraction of packets delivered is high enough the utility saturates exponentially to 1 at a speed
which depends on αi. Such saturating functions are typical of both empirical and theoretical rate distortion
functions associated with voice/video streams.

1

low

high

α

α

‘acceptable’

‘unacceptable’

1
i

u (x)

x = fraction of useful packets recieved in time slot

i

i

iβ

Figure 2: Example of an inelastic (sigmoidal) utility function and it’s sensitivity to its parameters α and β.

As with elastic tasks an inelastic task could be assigned insufficient resources leading to ‘soft blocking,’
i.e., the task remains in the system accruing a zero utility until termination. Thus for example if an inelastic
task is given no resources from the start it would contribute a zero term to the weighted normalized current
utility, Eq. (2), and to the overall system utility Eq. (3) during the period

�
s i � fi � �

2.3.2 Application-level utility functions for multi-point sessions

As mentioned earlier most tasks in a tactical mission will involve sets of receivers. We let R i denote the set
of possible receivers associated with task i. In order to define a utility per slot for such tasks we need to
define appropriate compositions that reflect the utility from the point of view of various receivers.

Decomposition into point-to-point tasks. One approach is to simply subdivide tasks that involve multi-
ple receivers into individual point-to-point tasks and treat these separately. In this case each point-to-point
task could be assigned a different weight, capturing source-receiver pairs that are of higher importance.
However the various point-to-point tasks might still be coupled via a common transport mechanism, e.g.,
reliable/unreliable multicast. In this case the utility functions defined above can be applied. Unfortunately
this would cause an explosion in the number of tasks, for example an n-way push-to-talk voice connection
would n � n different tasks to be defined with their own weights and possibly different utilities. It some cases
it makes better sense to make a composition of the performance seen by all receivers, this would reflect the
overall utility of a task, for example the utility of broadcast message may be better defined in terms of the
fraction of end nodes that received it on time. We discuss such compositions below.

Composite utilities for many-to-many tasks. We propose to define receiver-oriented compositions of
the utility of a task involving a set Ri of receivers. If task i is elastic we define a receiver oriented quality of
service seen by r
 Ri on slot t as

qi
�
t � r � � bits successfully received by r on time slot t

∆
(7)

and let qi
�
t � r � � 0 if no new information was received by receiver r on slot t. Analogously if task i is

inelastic we define a receiver-oriented quality of service seen by r
 Ri on slot t as

qi
�
t � r � � fraction of ‘useful’ packets successfully received by r on time slot t (8)

7

and let qi
�
t � r � � 1 if no packets were sent to r by any source. Recall that we define the vector

�
q i
�
t � ��

qi
�
t � r �	� r
 Ri � characterizing the received QoS for each receiver time slot t.
Let ui � r � � to be an elastic/inelastic utility function associated with receiver r of task i capturing the utility

it derives from its perceived QoS qi � r � t � on a given slot. We define ui
� � to be the overall utility for task i as a

composition of that seen by the various receivers. Several methods of composition can be considered. The
arithmetic mean

ui
� �
qi
�
t ��� � 1

�Ri � ∑
r � Ri

ui � r � qi
�
t � r ��� (9)

gives a sense of the utility seen from a typical receiver’s point of view. Assuming a set of receiver weights
wi � r � r
 Ri are specified for task i one can define an weighted arithmetic mean,

ui
� �
qi
�
t ��� � ∑r � Ri

wi � rui � r � qi
�
t � r ���

∑r � Ri
wi � r (10)

which places more emphasis on some receivers than others. One can also compose the receiver’s utilities
via a harmonic mean, i.e.,

ui
� �
qi
�
t ��� � �Ri �

�
∑

r � Ri

1
ui � r � qi

�
t � r ����� � 1

(11)

which avoids excessively biasing the utility towards receivers that see poor performance, e.g., those that are
further away from the source. A final possibility is to make the composite utility the worst case utility
across receivers, i.e.,

ui
� �
qi
�
t ��� � min

r

�
ui � r � qi

�
t � r ���	� r
 Ri � (12)

which would in principle drive a reconfiguration policy to make the QoS of all receivers roughly equal and
as high as possible. Note that if task i is elastic, and transported via an acknowledgment based reliable
multicast service, receivers may make progress in lock step. In this case the QoS, seen by various receivers
would also be approximately the same, and all of the above would be roughly the same. However negative
acknowledgment based reliable multicast service [1] or even peer-to-peer file sharing schemes would not
have this property.

2.4 Possible Supplementary Operational Constraints

As mentioned earlier we recommend the capability to supplement the overall utility with explicit opera-
tional constraints. These are explicit directives the network designer can use to constrain the reconfigura-
tion/adaptation mechanisms. As with the overall utility function, one must be able to assess whether they
are met when the constraints are feasible, i.e., it is indeed possible to meet them.

Topology and connectivity. When a MANET reconfigures/adapts to optimize an overall utility in support
of a given independent workload it will naturally attempt to maintain connectivity/reachability information
required to support the workload. Since such workloads are independent of the connectivity the network
maintains, a connection which can not be established, e.g., because a destination is not reachable, will simply
be lost with the associated impact on the overall utility. Thus our overall utility reflects the need to maintain
connectivity, at least that which is appropriate for the given workload, since we assume the precise workload
is not known a priori this provides some motivation for the MANET to exert significant effort to maintain
and acquire reachability information in a timely fashion. However, in practice the application workload is
not ‘independent’ of the connectivity the MANET maintains. A node which is not known or reachable, is a
node to which one could not attempt connecting to. Because maintaining connectivity is costly in terms of
energy and overhead traffic, and there are aggressive mechanisms that could be used to achieve this goal, it
may still make sense to explicitly require the system meet a specific connectivity constraint.

8

To that end one can define the current normalized utility function subject to system constraints by simply
checking that a constraint is satisfied at each time slot. Thus for example let Ct be a connectivity predicate
that should be satisfied at slot t, e.g., the network is connected, then we can define the overall system utility
subject to such constraints as

Un � W � p � � 1
t �

t
�

∑
t � 1

Un
t

�
W � p � 1 � Ct � (13)

where 1
�
Ct � is 1 if Ct is true and zero otherwise. Under this overall utility function whenever the system does

not satisfy the desired constraints the current normalized utility is set to zero irrespective of the utilities that
various tasks may be achieving. This is a hard constraint on operation, but one may define soft constraints
whereby partial satisfaction multiplies the current normalized utility by a number between 0 and 1 capturing
the degree of violation.

Prioritization and preemption. Given a set of applications sharing network resources a basic objective
for the network designer will be to prioritize access in the sense of deciding which applications should be
given a larger share of limited resources. With the current utility function the network designer can assign a
large weight wi to a task i he wishes to favor. Unfortunately this is only a relative prioritization whose impact
depends on the resources required, current load, types of competing tasks, etc. Thus the precise impact of
such weights is hard to evaluate a priori. As such it may be desirable to give the system designer additional
flexibility which allows him to specify preemption rules that should be followed. For example, he might
wish to indicate that task (or application type) i should strictly preempt task j. An adaptation/reconfiguration
policy would then operate subject to strictly satisfying such preemption constraints.

One way to enforce such prioritization rules in the overall system utility function is to define a predicate
Pt � i or preemption rules that must be satisfied by tasks that are concurrently active. The current normalized
utility at time t subject to such constraints would then be given by

Un
t
�
W � p � � ∑i � At

wi ui
� �
qi
�
t ��� 1

�
Pt � i �

∑i � At
wi

(14)

where 1
�
Pt � i � is 1 if prioritization/preemption rules for task i are satisfied on slot t and zero otherwise. Thus

violating the prioritization predicate in allocating resources would seriously penalize an adaptation and/or
reconfiguration mechanism. Such prioritization rules would constrain the tradeoffs the system can make and
thus the behavior of reconfiguration and/or adaptation schemes. The overall system utility would be defined
as before possibly including the additional connectivity constraints defined above.

3 System Utility as a Test and Evaluation Metric

As mentioned in Section 1 the system utility metric serves to drive adaptation/reconfiguration as well as a
measure of how well a particular policy is performing relative to another. In other words it serves as a test and
evaluation metric for various solutions to the adaptation/reconfiguration problem relative to the designer’s
objectives as implicitly captured by the overall system utility function. A test in which a policy achieves a
high normalized overall utility close to 1 is one in which the system was able to carry the workload offering
a high QoS to all tasks and effectively realizing the tradeoffs associated with the utility function. We note
that we have normalized our metric, so one should only compare the overall utility achieved by the system
for the same workload.

Evaluating the overall system utility requires monitoring the set of active tasks and the QoS realized for
the receivers associated with each task. Recall that the system dynamics have been discretized so that the
QoS seen by receivers is summarized on a ∆ sec interval. We have defined a receiver-oriented overall utility
function whence each receiver needs to be able to report its perceived QoS over such intervals, e.g., for
elastic applications the receiver would report the bandwidth seen on the slot, while for inelastic applications

9

a receiver would report the fraction of ‘useful’ packets it received. Recall that for inelastic traffic usefulness
may depend on the application type. In addition per slot utility functions and weights are associated with
each task/receiver, which translate the perceived QoS to receiver utility, and which in turn can be composed,
to evaluate the overall current normalized system utility Eq. (1) and overall normalized system utility Eq.
(3). The adaptation/reconfiguration system may wish to have direct access to the realized QoS vectors,
and tasks utility functions, for adaptation. However for test and evaluation purposes the overall normalized
system utility function will summarize how well the system is performing.

4 Related Work

There has been a substantial amount of related work that is relevant in considering the development of
appropriate user and system utility functions for wired and wireless systems. It would be unreasonable
to attempt to provide a complete bibliography of this area. In this section we provide a brief introduction
highlighting key papers and research that might be appropriate towards deepening some of the considerations
we have addressed in this paper.

The notions of elastic and inelastic application types used in this paper were perhaps first introduced in
the networking context by [2]. Experimental support for modeling the user perceived utility for data transfer
applications as an elastic utility, i.e., concave function, can be found in [3]. For inelastic, e.g.,, multimedia
traffic, experiments [4, 5, 6, 7] have indeed suggested the existence of a threshold beyond which the user
does not perceive improvement in QoS.

At the core of the adaptation/reconfiguration problem is the question of how resources should be shared
among ongoing sessions. This has been the center of a rich research activity in recent years. The basic
paradigm is the definition of a typically convex optimization problem associated with a fixed set of tasks
which have elastic utility functions in their allocated rates. Much of this work has focused on investigating
how to best perform congestion control, or indeed to understand the implicit utility function associated with
TCP congestion control. As mentioned earlier there is indeed much work in this area – a representative paper
dealing with elastic traffic would be [8], more recently work addressing inelastic tasks would be [9] and the
joint congestion and power control in wireless systems [10]. When the network supports inelastic tasks,
or both elastic and inelastic tasks, the associated utility maximization problem may no longer be convex,
making the optimization task at hand much more complex.

5 Conclusion and Further Research

This paper develops the elements of a possible overall system utility function to drive adaptation/reconfiguration
of MANETs. We have kept things simple by distinguishing only among elastic and inelastic application
types, but have introduced some complexity to handle multi-point tasks which are likely to be common in
tactical missions. Perhaps the most subtle aspect of the proposed framework is the need to specify an overall
utility function that appropriately captures the utility of a system subject to a dynamic workload, i.e., were
tasks come and go. To that end we proposed a normalized overall current system utility which is averaged
over time so as to capture the overall normalized system utility. A key aspect of our definition is that the
current overall utility of the network is set to 1, i.e., the highest possible, when the system is not currently
supporting a task. Thus when tasks are initiated the job of the adaptation/reconfiguration policy is to adjust
resources etc, so as to expedite elastic flows, i.e., return to the utility 1 state, and/or give inelastic flows the
highest possible utility. Another key aspect is that such tradeoffs should be guided implicitly by the weights
and application level utilities in the overall system function.

There are many interesting research and implementation issues associated with the problem we have
discussed in this paper. We briefly comment on two of these. First, for simplicity in Section 2.1 we formally

10

defined the notion of an independent task workload, where the same sequence of tasks is offered to the
MANET irrespective of the QoS seen by each task or the network topology. Making this assumption seems
reasonable both to understand and develop adaptation/reconfiguration policies as well as from the perspec-
tive of testing and evaluating such technology. However in practice there may be dependencies among tasks,
e.g., if one fails, or sees poor performance, the subsequent task may not be initiated. Future work might
look at explicit usage patterns, i.e., threads of tasks, and define a higher level utility function associated with
threads of tasks. The second issue is addressing the challenge of defining the ‘right’ mission utility func-
tion in the first place. In particular while our weighted additive utility function is quite intuitive and would
roughly drive the system in the desired direction, in some scenarios it may not be the best. Specifically the
precise impact of the relative weighting among tasks is difficult to evaluate a priori – it depends on a variety
of scenario dependent characteristics, e.g., available and required resources, load and contending task types
etc. As such it would be interesting to close the loop with an automated mission understanding subsystem
which based on additional feedback from unsatisfied users adjusts the weights on an overall system utility
to better serve the current or subsequent missions. We see this as an additional level of flexibility that one
might eventually study once succesfull reconfiguration/adaptation policies for a given overall system utility
are devised.

References

[1] A. Adamson, C. Bormann, M. Handley, and J. Macker. Negative-acknowledgmenet (nack)-
oriented reliable multicast (norm) protocol. Networking Working Group RFC 3940, Nov. 2004.
www.ietf.org/rfc/rfc3940.txt.

[2] S. Shenker. Fundamental design issues for the future internet. IEEE J. Select. Areas Commun.,
13(7):1176–88, Sept. 1995.

[3] Z. Jiang et. al. A subjective survey of user experience for data application in future cellular wireless
networks. Proc. of SAINT, 2001.

[4] G. Ghinea and J.P. Thomas. Qos impcat on user perception and undestanding of multimedia video
clips. ACM Multimedia, pages 49–54, 1998.

[5] J.Lu et. al. Measuring ATM video quality of service using an objective picture quality model. Proc. of
SPIE, 3845:290–297, Nov. 1999.

[6] I. Dalgic and F.A. Tobagi. Glitches as a measure of video quality degradation caused by packet loss.
Proc. 7th International Conference on Packet Video, pages 201–206, 1996.

[7] J. Zamora et. al. Objective and subjective quality of service performance of video on demand in
ATM-WAN. Signal Processing - Image Communications, 14(6-8):636–654, 1999.

[8] F.P. Kelly, A.K. Mauloo, and D.K.H Tan. Rate control in communication networks shadow prices,
proportional fairness and stability. Journal Oper. Res. Soc., 15(49):237–55, 1998.

[9] M. Chiang, J.W. Lee, R. Calderbank, D. Palomar, and M. Fazel. Network utility maximization with
inelastic, coupled and rate reliability tradeoff utilities. 2004. Preprint.

[10] M. Chiang. Balancing transport and physical layers in wireless multihop networks: jointly optimal
congestion control and power control. IEEE JSAC, 23(1), Jan. 2005. To appear.

11

